Application of bioassays in routine testing

Ron (L.A.P.) Hoogenboom

1957: chickens discover dioxins

- Millions of dead and diseased chickens in US
- Chicken oedema disease
- After ten years dioxins identified as toxic agent
- Source: fat scrapings from cow hides that were treated with polychlorophenols
- Similar incident in 1969 in North Carolina due to wastewater from pesticide plant

The Belgian dioxin crisis in 1999

Dioxin and PCB levels in feed, chicken and egg

Sample	Dioxins ¹ (pg WHO-TEQ/g)	Planar PCBs ² (pg WHO-TEQ/g)	PCBs ³ (µg/g)
Animal feed	782	361	32
Chicken fat	958	453	37
Egg fat	685	ND	35

Source: >160 kg PCB-oil !

- ¹ Background levels below 5 pg WHO-TEQ/g fat.
- ² Planar PCBs reflects the sum of PCBs 126, 169 and 77.
- ³ PCB levels reflect the sum of PCBs 28, 52, 101, 118, 138, 153, 180, which account for about 30% of the dioxins in the case of a PCB-mixture of Arochlors 1254 and 1260.

Incidents in the food chain

Dioxins in feed and food

- USA 1957, Japan (1967), Taiwan (1979), Belgium (1999)
- Aflatoxins in turkey feed (turkey-X-disease, 1960)
- PBBs in bovine feed (Michigan, 1973)
- Medroxyprogesteron acetate/estradiol in feed (2002)
- Poisoning Victor Yuchenko (2004)
- Melamine in petfood and later milk powder (2008)
- Supplements including tea (various cases)

Discovery

Discovery based on health effects Leading to measures Including setting of limits Including increased monitoring • Use of chemical methods Only occasionally use of bioassays Identification required for legal follow-up But chemical analysis is dedicated We only look for "knowns", not "for unknowns" If added on purpose, use of "unknowns" is preferred

Types of bioassays

Humans (to be prevented of course)

- Animals (birds in mines, mice/rats for marine toxins)
- Bacteria (growth inhibition by antibiotics)
- Yeast cells (reporter gene assays for hormones)
- Mammalian cells
 - Based on known effects (cell death, growth up/down, up-regulation enzyme)
 - Transfected cells (reporter gene assays)
 - Broad effects based on gene expression

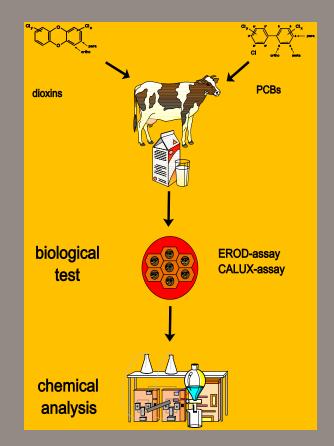
Application of bioassays

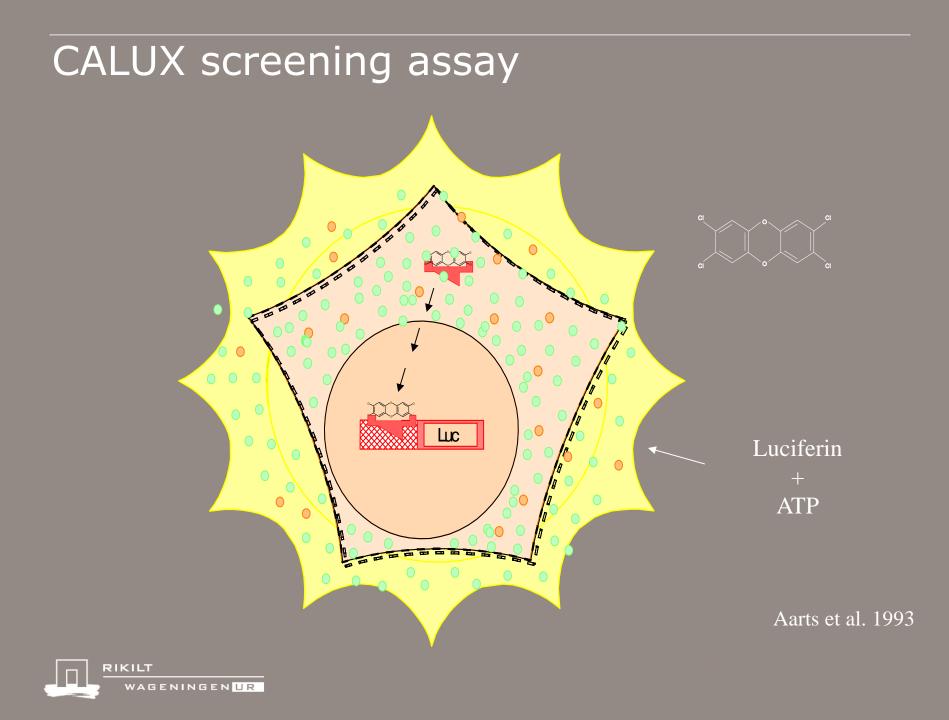
Regarded as screening assay

Used for selection of samples

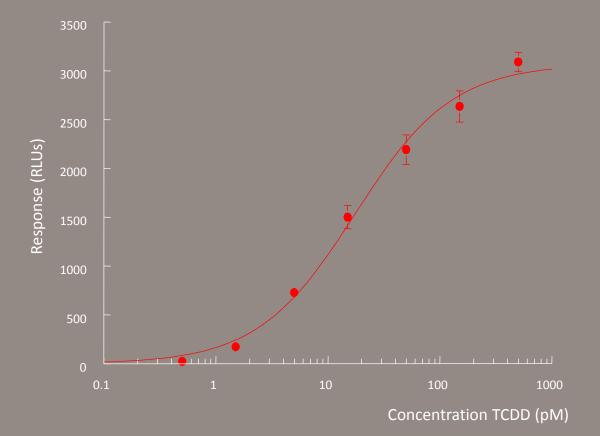
- However, most samples normally negative
- Negative or suspected
- Estimation of level possible but not required

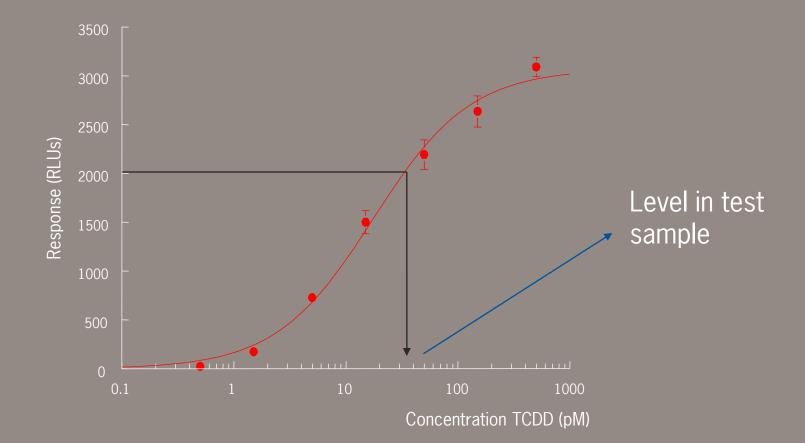
Also may detect other compounds with same effects


• False-positive or indication for novel risk?

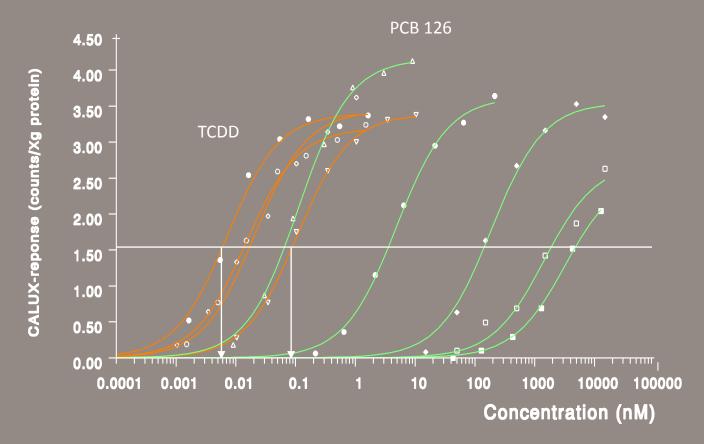

Dioxins: GC/HRMS and/or bioassay

DR CALUX: screening removal negative samples confirmation suspects

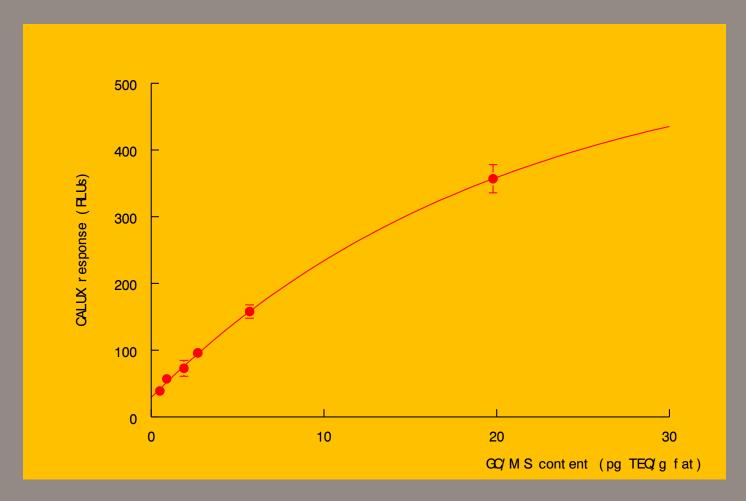

GC/HRMS: confirmation



Dose-related response

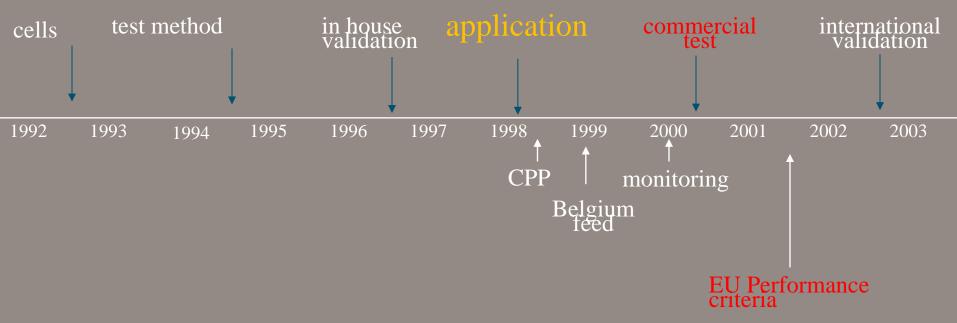


Estimation of level in sample


Dose-response curves dioxins and dI-PCBs

Bovee et al. 1998

Calibration curve of reference samples (butter fat)



History of the CALUX-assay

Performance criteria

Criteria proposed by experts

- Papers presented at Dioxin 2001 South Korea
- Use to prepare Commission Directives 2002/69/EC (food) and 2002/70/EC (feed)
- Upgraded to Commission Regulations EC (No) 1883/2006 (food) and 152/2009 (feed)
- Recently replaced by Commission Regulations EC (No) 252/2012 (food) and 278/2012 (feed)
 - based on the work of expert group EURL/NRL

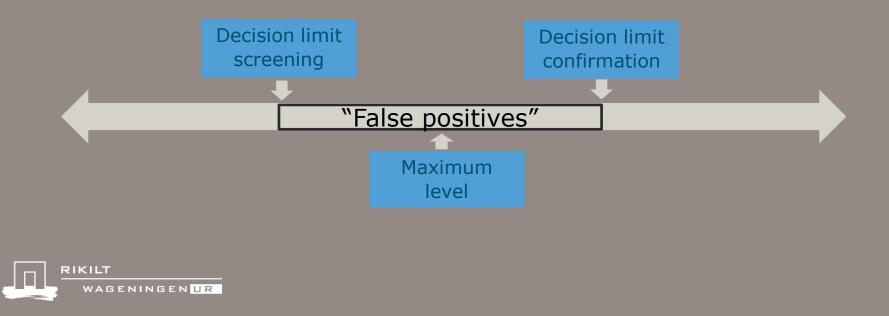
Screening/quantitative approach

- CALUX is a screening method (yes/no answer)
- Estimation may be given; support confirmatory analysis
- Should be in BEQs and not TEQs
 - REPs not identical to TEFs
 - Also compounds w/o TEF may show response
 - Screening result should be recognizable
- Estimation of level may be based on:
 - standard curve (eg TCDD/PCB 126)
 - Set of reference samples

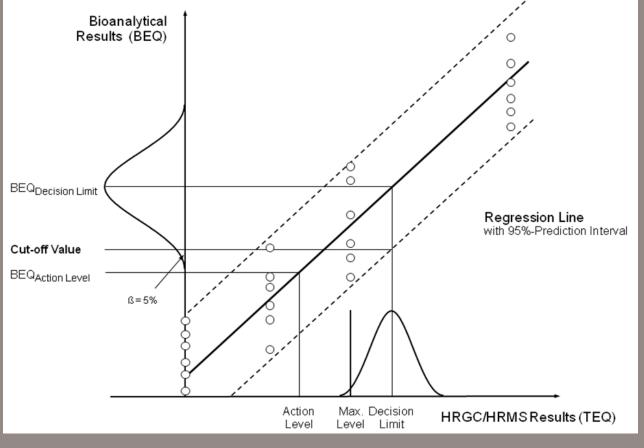
False-compliant rate

Previously set at 1%

- Difficult to prove compliance
- Hundreds of positive samples need to be analyzed
- Not clear if towards ML or AL
- In other areas 5% is used (EC 2002/657)
- Therefore changed to 5%
- Refers to maximum limit, not action limit
 - Performance towards action limit should be evaluated


Setting of cut-off levels

Screening should not miss positive samples


 Chance less than 5%

 Confirmation should not falsely decide on positive result

 Chance less than 5%

Setting of cut-off levels for screening

Proposal: use 2/3 ML (≈AL) as cut-off for screening

RIKILT WAGENINGEN UR

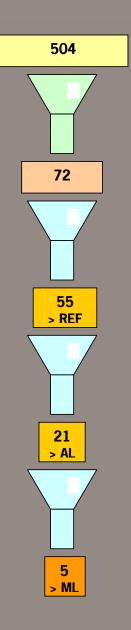
Practical performance

Performance at RIKILT

	ALs ¹	REF	DR (CALUX	HRGC/HRMS (AL/ML+mu)				
Matrix	pg TEQ/ g fat	pg TEQ/ g fat	tested	suspected > REF	Samples >REF	Samples >AL ^{2,5}	Samples >ML ^{3,5}	Neg's tested	>AL
Pork	0.6/0.5	0.5	94	0	0	0 (0/0)		16	0
Poultry	1.5/1.5	0.9	54	0	0	0 (0/0)		15	0
Bovine	1.5/1.0	0.9	87	10	8	5 (0/5)		17	0
Sheep	1.5/1.0	0.9	79	36	35	11 (6/10)	1 (0/1)	7	0
Deer ⁴	1.5/1.5	0.9	6	6	6	5 (3/5)	4 (3/4)	0	na
Eggs	2.0/2.0	1.9	106	17	4	0 (0/0)		22	0
Milk	2.0/2.0	1.9	78	3	2	0 (0/0)		21	0
Total			504	72	55	21 (9/20)	5 (3/5)	98	0

1. ALs for dioxins/dl-PCBs,

2. Samples exceeding one or both ALs (samples exceeding ALs for dioxins/dl-PCBs),


3. Samples exceeding one or both MLs (samples exceeding MLs for dioxins/sum),

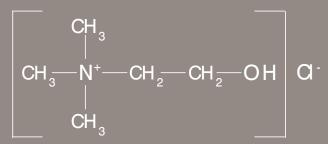
4. No official limit for deer; for comparison the limits for game were used,

5. evaluation against AL and ML included 20% measurement uncertainty

Evaluation of dataset

Conclusions

- CALUX assay is a valuable tool for screening, especially for routine monitoring where most samples will be negative
- Suspected samples should be analyzed by GC/HRMS analysis
 - Confirmation of dioxins/dl-PCBs
 - Determination of TEQ-level
 - Determination of congener pattern: source identification


Combined use of a bioassay and a confirmation method best strategy for detecting novel risks

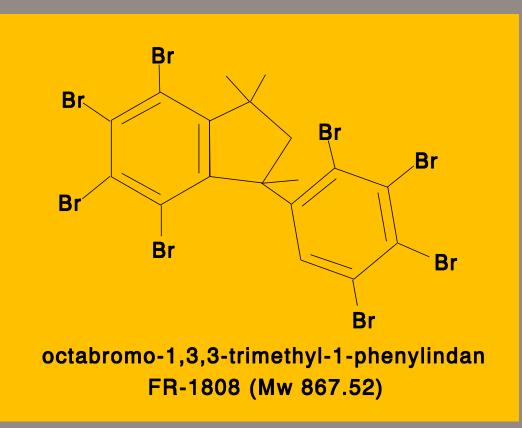
Detection of novel risks?

Cholin Chloride

Feed additive (up to 1 g/kg)

Cholin Chloride

- Positive test response in DR CALUX (different samples)
- Indicative level around 5 ng BEQ/kg
- GC/HRMS: dioxins and dioxin-like PCBs below LOQ
- Identity confirmed by NMR: no mix-up



GC-TOF analysis

- Sample contaminated by brominated compounds
- PBDEs and tribromophenol
- Unknown compound with 8 bromo-groups and molecular weight of 867
 - Found through internet: FR-1808
 - Ordered and confirmed

FR-1808 (OBIND)

Negative in DR CALUX

Brominated compounds

samples 208908 and 210099)

PBDEs

- 47: 4 and 78 ng/kg
- 49: 0.5 and 131 ng/kg
- 99: 2 and 150 ng/kg
- 100: 0.4 and 17 ng/kg
- FR-1808: 140 and 700 ng/kg (CALUX neg)
- 2,4,6-tribromophenol: 1100 and 3600 ng/kg
- And brominated dioxins
 - Considered equally toxic as chlorinated dioxins

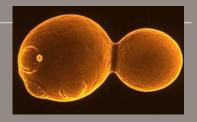
Other application fields

Hormonal substances

- Interesting area for fraud: increased growth and better feed conversion
- Yeast assays for oestrogens, androgens, corticosteroids
- Receptor assay for beta-agonists
- Tests validated and run under accreditation
 - for feed and urine
- Decision limit based on negative samples
 - Any sample with abnormal response is examined

Adulterants in food supplements

Addition of pharmacologically active substances


• To make it work

Examples

- Diethylstilboestrol in Prostasol
- Androgens in anabolic supplements
- Beta-agonists in fat burners
- Sibutramine in slimming products
- Viagra-like compounds in potency products

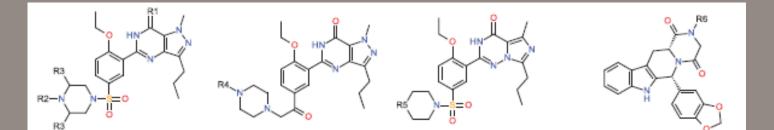
Food supplements

■ Dietary supplements → analysed by LC-MS/MS for 49 steroids.

• 18 supplements - 11 positive and 7 negative

all positive in the yeast androgen assay (RAA)

2 supplements showed androgenic activity in the yeast androgen assay (RAA): additional steroids in both confirmed (1-testosterone)

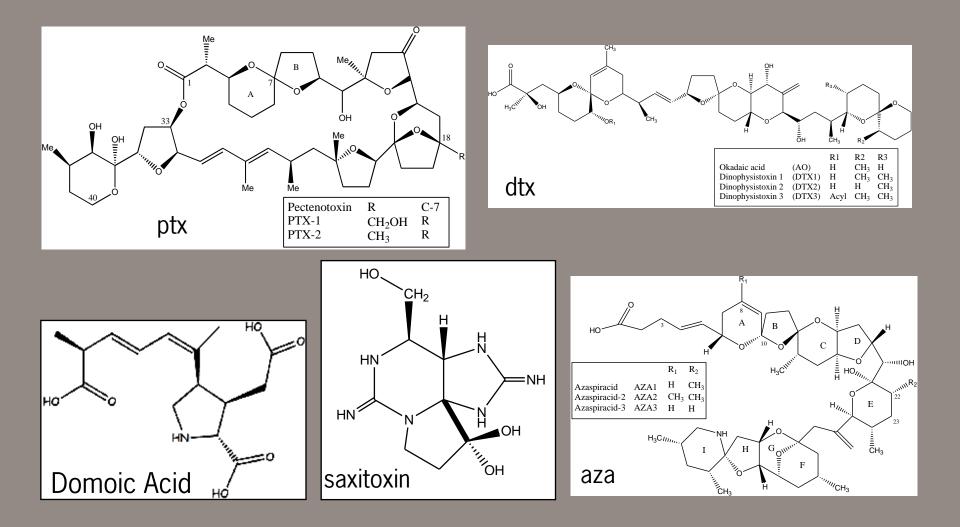

Viagra-like compounds in natural products PDE-5 (phosphodiesterase) inhibitors

Horny goat weed (yin yang ho)

 Contains icariin
 Weak PDE-5 inhibitor

 In most cases sildenafil,

or other synthetic analogues


Dose response curves

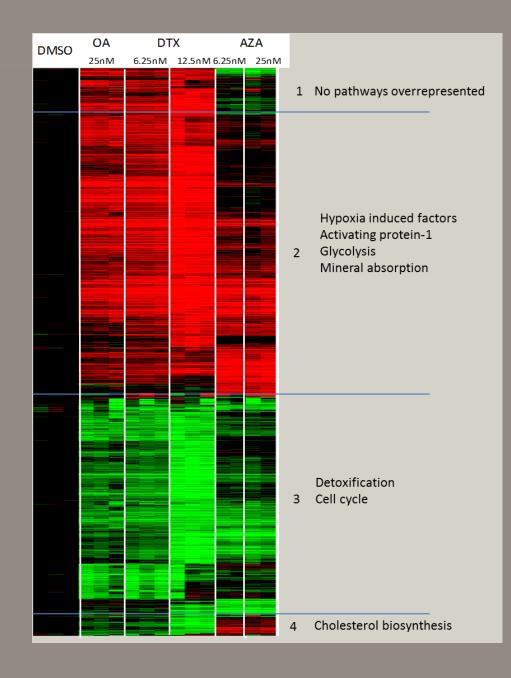
Food supplements

Marine biotoxins: PSPs, DSPs, ASPs

EU legislation

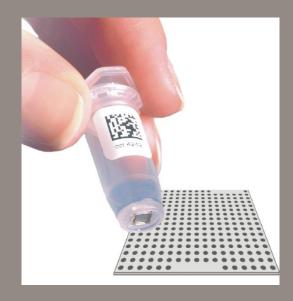
Regulation 2074/2005/EC

- Mouse bioassay (MBA) reference method
- Rat bioassay has been used for DSPs


Regulation 15/2011/EC

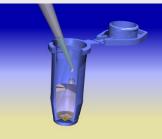
- LC-MS/MS reference method for DSPs
- For PSPs mouse bioassay, or Lawrence method (LC/fluorescence)
- For harvest areas MBA still allowed (novel risks)
- Lack of standards for all toxins
- Alternatives needed

Gene expression?


- CaCo-2 cells exposed to OA, DTX and AZA
- Full genome array
- Various genes selected

Array Tube for marine toxins (EU Biocop)

Transcriptomics assay on Clondiag AT-Platform >> ArrayTube (AT) Platform



single tube format based on conventional laboratory vials (Clondiag, nowadays Alere)

(ILT WAGENINGEN<mark>UR</mark>

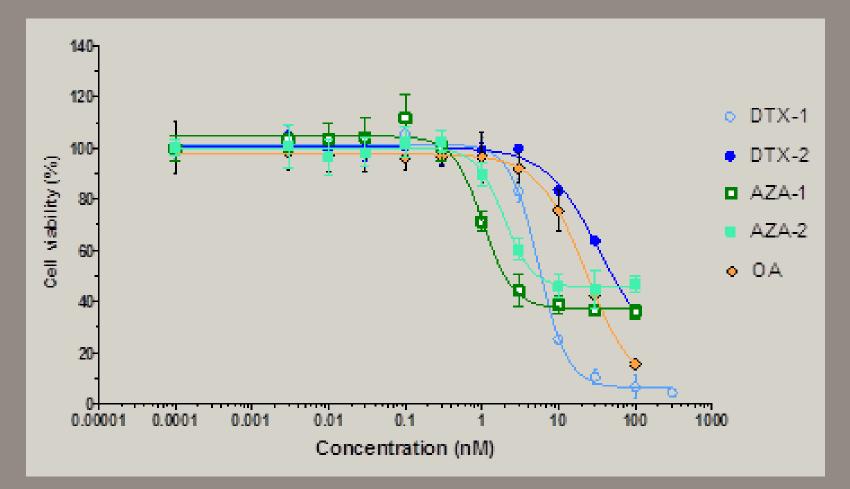
microtube

easy processing with standard lab equipment

- no evaporation
- uniform wettability
- small volumes
- optimal processing through small surface area

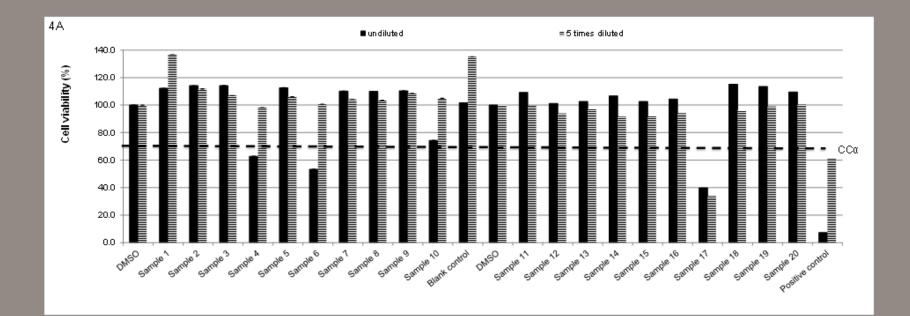
+ microarray

oligonucleotide array

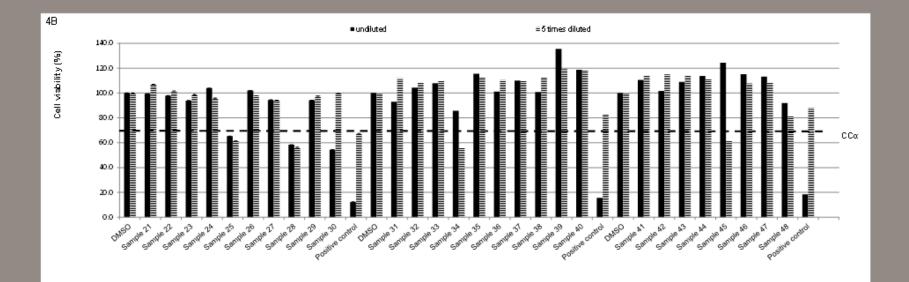

protein (HLA) array

- custom manufacturing of protein/peptide or nucleic acid based arrays
- array size of 2mm x 2mm with up to 300 features
- arrays including reaction control spots

Luminex


Neuro-2a assay (reduced MTT reduction)

Shellfish samples from Chile


Primarily yessotoxins

Shellfish samples from Chile

Primarily yessotoxins

Also works for PSPs and NSPs

Saxitoxins

Ciguatera toxins (much more sensitive than LC/MS)

Tetrodotoxins

Questions?

