

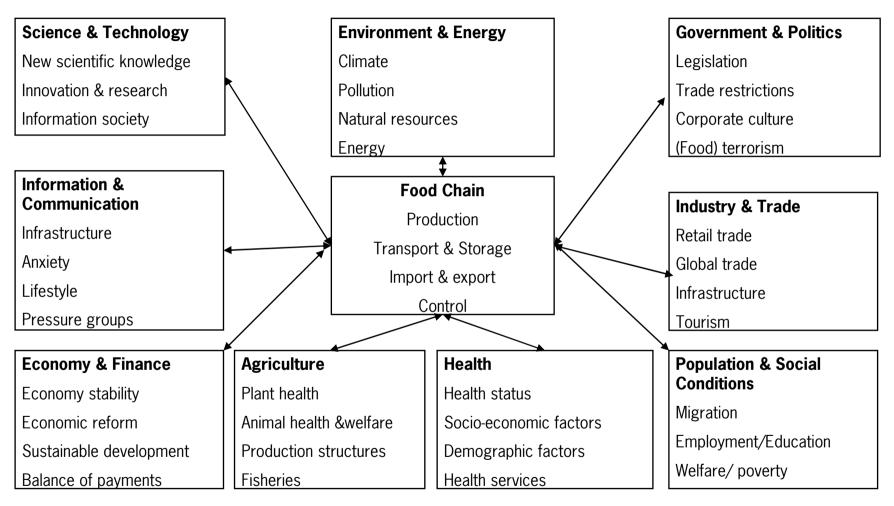
Predicting the occurrence of mycotoxins in wheat, maize and nuts according to the holistic approach

Susan Dekkers

Outline

Background

- Holistic approach
 - PERIAPT project
 - EMRISK project
 - RIVM project for VWA
 - Many other projects



Nuts (www.nuthealth.org)

SAFE FOODS

- WP2 Early detection of emerging risks
- Task 2.10 Early detection of mycotoxin risk
- Task 2.10.1 Recognise mycotoxin risk signals

Holistic approach (1)

Source: EMRISK Final report, 2006

Holistic approach (2)

Sectors with different distances from food supply chain

- Primary sectors:
 - Science & technology
 - Environment & energy
 - Health
 - Agriculture
 - Economy & finance
 - Industry & trade

- Secondary sectors:
 - Government & politics
 - Population & social conditions
 - Information & communication

Background: Wheat harvest on the Palouse (ARS)

Holistic approach (3)

- Selecting indicators
 - Identify indicators
 - Define criteria for selection
 - Prioritise
- Develop decision making instrument

Nature	Features	Alert value	UF*	Examples
Qualitative	Yes	Red	5	Bad
	No	Green	1	Good
Semi- quantitative	Too low or too high Low or high Normal	Red Yellow Green	5 3 1	<25 or > 300 % 25-50 % or 150-300 % 50-150 %
Quantitative	Out of wide range	Red	5	> x ± 6 s.d.
	Within wide range	Yellow	3	= x ± 6 s.d.
	Within normal range	Green	1	= x ± 3 s.d.

Collecting information

Predictive model (1) – Aim and use

Objective:

 predict the presence of re-emerging mycotoxins on wheat, maize and nuts

Use:

- adjust sampling strategies
- adjust purchasing strategies

Stakeholders:

- risk assessors/risk managers
- food/feed industry

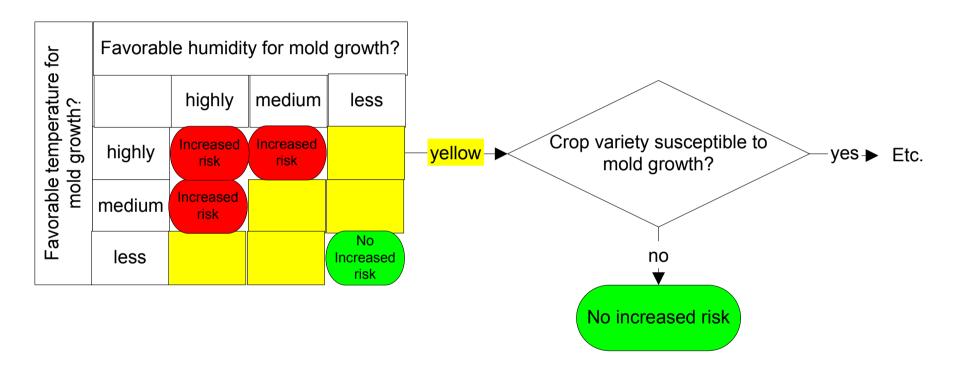
Predictive model (2) – Background

- Several regional models are available
 - e.g. DONCAST used to predict DON in wheat in Canada

- For certain crops, legislation enforces controls
 - e.g. Pistachio nuts from Iran

Predictive model (3) – Two examples

Fictive traffic light model with fictive scores


Indicator	Possible outcomes indicator		Results	Weighing factor	Score
Humidity	Red ¹ Yellow Green	> 85 % 75 - 85 % < 75 %	1	2	2
Temperature	Red Yellow Green	26 -28 °C 20-25 or 28-30 °C <20 or > 30 °C	1	2	2
Crop choice	Red Yellow Green	susceptible variety non-resistant variety resistant variety	0	1	0
Crop rotation	Red Green	Wrong crop rotation Right crop rotation	2	1	2
Total score	Red Yellow Green	> 5 3-5 0-2			6

¹ Possible outcomes for each different indicator: red = 2; yellow = 1; green = 0.

Predictive model (4) – Two examples

Fictive decision tree

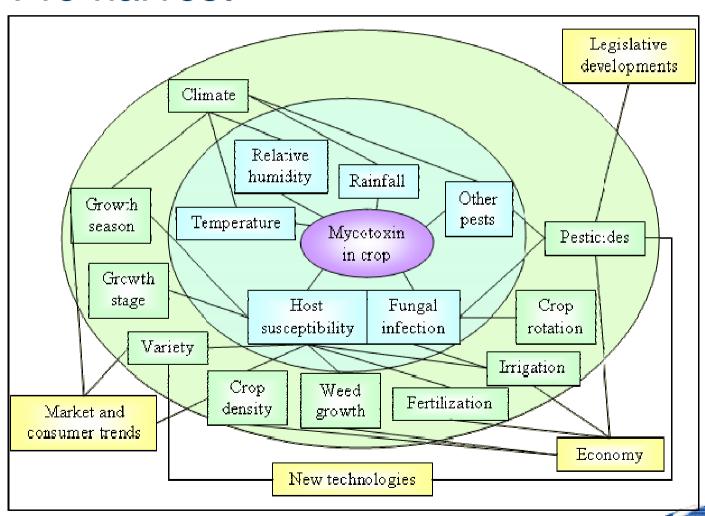
Predictive model (5) – Approach

The project includes the following activities:

- 1. Identification of relevant mycotoxins
- 2. Identification of relevant indicators
- 3. Review and selection of indicators
- 4. Define risk categories within each indicator
- 5. Identification of data sources
- 6. Developing a predictive model
- 7. Testing the model performance assessment

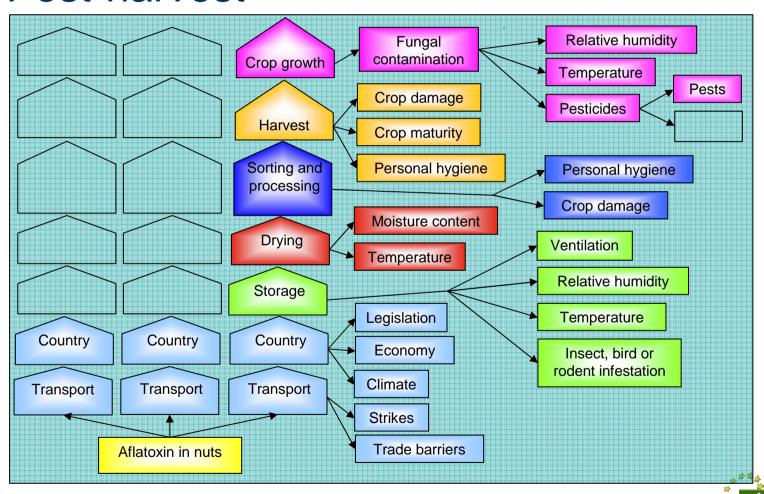
1. Identification of relevant mycotoxins

Based on: RASFF and literature review


Commodity	Mycotoxin
Wheat	Deoxynivaenol (DON)
	Zearalenone (ZEA)
	Nivalenol (NIV)
	Ochratoxin A (OTA)
Maize	Fumonisin B1(FB1), FB2 and FB3
	Ochratoxin A (OTA)
	Deoxynivaenol (DON)
	Zearalenone (ZEA)
	Nivalenol (NIV)
	Aflatoxin B1 (AFB1), AFB2, AFG1 and AFG2)
Nuts	Aflatoxin B1 (AFB1), AFG1, AFB2 and AFG2
	Ochratoxin A (OTA)

2. Identification of relevant indicators (1)

- Based on:
 - Predictive models reviewed by UNICATT
 - Preliminary inventory of RIVM project for VWA (Dutch Food Safety Authority)
 - Publications on monitoring, management and prevention strategies
 - Literature review


2. Identification of relevant indicators (2)

Pre-harvest

2. Identification of relevant indicators (3)

Post-harvest

2. Identification of relevant indicators (4)

Specify schemes for wheat, maize and nuts?

Wheat infected with fusarium head blight (www.ncsu.edu/news)

Corn infected with *A. flavus* (www.aspergillus flavus.org)

Walnut infected with *A.flavus* (msa.ars.usda.gov)

3. Review and selection of indicators (1)

- Based on: experts opinions
 - Interviews (May-June 2007)
 - Workshop (20 September 2007)
 - Focus on Fusarium toxins in wheat
 - In cooperation with MYCONET

Pistachio (Michailides, 2004)

3. Review and selection of indicators (2)

- Expert opinions
 - Identification of important indicators
 - Ranking of important indicators
 - Selection of most relevant indicators
 - Holistic approach: experts from different influential sectors were interviewed (e.g. agriculture, food chain, economy and social circumstances)

3. Review and selection of indicators (3)

Top 10 indicators based on interviews

Humidity/drought **Environment & Energy** Temperature Tillage policy Crop rotation Crop choice Storage conditions and quality **Food Chain** Transport conditions and quality Global trade Industry & Trade **Government & Politics** Limits for mycotoxins Social circumstances & Health Changes in eating patterns

3. Review and selection of indicators (4)

Top 7 indicators based on workshop

Humidity (relative humidity)

Temperature

Tillage policy

Crop rotation

Crop choice

Drying

Storage and transport conditions

Food Chain

4. Define risk categories within each indicator

- Clear definition of indicators (workshop)
- Determine cut-of values (future plans)

Indicator	Possible outcomes indicator		Results	Weighing factor	Score
Humidity	Red ¹ Yellow Green	> 85 % 75 - 85 % < 75 %	1	2	2
Temperature	Red Yellow Green	26 -28 °C 20-25 or 28-30 °C <20 or > 30 °C	1	2	2
Crop choice	Red Yellow Green	susceptible variety non-resistant variety resistant variety	0	1	0

5. Identification of data sources

- Data sources of the preliminary inventory
- Data sources identified throughout the project
- Data from industry (future plans)
 - Confidentially?

6. Developing a predictive model

- Start simple => add extra indicators
- Interrelationships between indicators
- More input from industry needed
- Different models for different users, crops and moulds

7. Testing the model - performance assessment

- Use case studies from the past
- Investigate which indicators fell into which category

Corn infested by A.flavus (www.ansci.cornell.edu)

www.safefoods.nl

