Review of Predictive Models for Fusarium Head Blight and Related Mycotoxin Contamination in Wheat

A. Prandini1,*, S. Sigolo1, L. Filippi1, P. Battilani2, G. Piva1

1Institute of Food Science and Nutrition, 2Institute of Entomology and Plant Pathology, Catholic University of Piacenza, Agricultural Faculty, 29100 Piacenza, Via Emilia Parmense 84, Italy

*Corresponding author. Tel: +39-0523-599263; Fax: +39-0523-599259
Email address: aldo.prandini@unicatt.it

Abbreviations: CPL, Critical Period Length; DON, Deoxynivalenol; FHB, Fusarium Head Blight; PI, Prediction Incidence; TOX-risk, risk of toxicity; ZEA, Zearalenone.

Keywords: FHB, mycotoxins, predictive models, wheat.
Abstract

Mould growth and mycotoxin production are related to plant stress caused by environmental factors such as: extreme weather; insect damage; inadequate storage conditions and incorrect fertilization; these predispose plants to mycotoxin contamination in the field. *Fusarium* species infect wheat during the flowering period. In addition to losses of yield, these fungi can also synthesize toxic components (mycotoxins) in suitable environmental conditions, thus threatening animal and human health. Given the severe consequences and the fact that mycotoxins affect production throughout the world, the ability to predict Fusarium head blight (FHB) and deoxynivalenol (DON) and other mycotoxin contamination is important to reduce the year-to-year risk for producers. Owing to these dangerous consequences in Argentina, Belgium, Canada, Italy, the United States and in Europe, computer models, based on weather variables (temperature, rainfall and moisture level), have been developed to predict the occurrence of FHB and DON contamination in wheat.
1. Mycotoxins and predictive models

Mycotoxins are toxic secondary metabolites produced by fungi (commonly called moulds) that colonize crops in field or post-harvest and thus pose a potential threat to human and animal health. Only some moulds produce mycotoxins and they are referred to as toxigenic. The major mycotoxin-producing fungal genera are *Aspergillus*, *Fusarium* and *Penicillium*. Many species of these fungi produce mycotoxins; moulds can grow and mycotoxins can be produced pre-harvest, during transport, processing or storage (Santin, 2005). The primary classes of mycotoxins are aflatoxins, zearalenones, trichothecenes, fumonisins, ochratoxins and ergot alkaloids. A practical definition of a mycotoxin is a secondary fungal metabolite that causes an undesirable effect when animals or humans are exposed to it. Usually, exposure is through consumption of contaminated food, which causes diseases known as mycotoxicosis. Mycotoxins exhibit a variety of biological effects in animals such as liver and kidney toxicity, effects on the central nervous system, estrogenic effects (Whitlow and Hagler, 2005) and reduction of immunological defences, to name a few. It is important, both for consumers’ health and the economic point of view, to prevent mould growth and subsequent mycotoxin production in food products (Pardo et al., 2006).

Mould growth and mycotoxin production are related to: the presence of fungal inoculum on susceptible crops; plant stress caused by extreme weather, faulty water and fertilization balance; insect damage; and inadequate storage conditions. In general, biotic and abiotic stresses (heat, water and insect damage) cause plant stress and predispose plants in the field to mycotoxin contamination (Whitlow and Hagler, 2005), and there is an urgent need to know the level of contamination in real time or in advance. This aspect stimulated efforts to develop models (Dantigny et al., 2005). A disease forecasting system is principally based on
the combined effects of host susceptibility, inoculum strength and meteorological conditions on disease development (Xu, 2003).

A model is a simplified representation of a system, which is a limited part of reality and contains interrelated elements, and attempts to summarise the main processes, to put forward hypotheses and to verify their coherence and consequences (Rabbinge and De Wit, 1989; van Maanen and Xu, 2003). The level of complexity needed for a specific model depends on the objectives and questions being asked of the model (Boote et al., 1996). Static and dynamic models can be developed, dependent if time is considered in the model. Among dynamic models; those defined as ‘descriptive’ simply trace the outlines of a system, and only show the existence of relations between elements, but do not explain these relations. A more complicated approach is taken when the aim is to describe a more comprehensive system with its relations therein and ‘explanatory’ models are developed in this case. During World War II a rational approach was developed in order to study a system in detail: systems analysis. Systems analysis was developed basically as a tool to consider military options but it was demonstrated to be useful in different disciplines, where a system is studied by distinguishing its major components, characterising their changes, and the interconnecting elements (Leffelaar, 1993). The system structure in plant pathology includes pathogen, host, environment, human actions and their relationships (De Wit, 1993). Modelling can be split into three steps: model development, model analysis and hypothesis testing (van Maanen and Xu, 2003). A simple way to represent a complicated system, like a pathosystem, is a relational diagram as a first step in model development (Leffelaar, 1993).

Collection of information from different sources (step 1) is the basis of “system analysis” that starts with drawing a relational diagram translated into quantitative relationships that allow the quantification of states. Putting together all mathematical functions (step 2), a simulation
model able to predict fungal development is finally obtained. Model validation and evaluation (step 3) is then necessary before building up a final model used on a large scale.

Explanatory models are significantly more complicated than descriptive. Due to the consideration of so many elements, as suggested by De Wit, the explanatory models are too complicated to be suitable for prediction in very different conditions.

The goal of this paper is to illustrate models developed for FHB and related mycotoxin contamination in wheat, the most studied disease related to mycotoxins because of the world wide distribution of wheat and *Fusarium*. Almost all models were developed as a descriptive model, and similar approaches have been followed in several countries, while an explanatory model, based on the system analysis, was developed in Italy.

2. *Fusarium* head blight (FHB) in wheat

Fusarium head blight, which is caused by several fungal species with *Fusarium* or *Fusarium*-like anamorphs, is a serious disease of wheat in many parts of the world (*Rossi et al.*, 2003b). Though FHB can be destructive, its severity varies greatly between years and locations, as this disease is heavily dependent on favourable epidemiological conditions (*Rossi et al.*, 2004).

Infection by *Fusarium* spp. on wheat occurs during the flowering period. In addition to yield losses, these fungi can also synthesize toxic compounds (mycotoxins) in favourable environmental conditions, thus representing an important threat for animal and human health (*Detrixhe et al.*, 2003). Preventive actions are possible so as control strategies; accurate predictions of DON in mature grain at wheat heading are needed to make decisions on whether a control strategy is needed. If weather variables can be quantified into DON-response relationship, a model could be developed to predict the concentration of DON using
both forecasted and actual weather data for specific fields (*Hooker et al.*, 2002). On the basis of the known relationship between fungal biomass and DON, more heavily colonized plant tissue is likely to have a greater fungal biomass, and consequently, higher DON content than less colonized tissue. For this reason, visual estimates of disease could also serve as indirect measures of DON to screen for genotypes with low DON accumulation (*Paul et al.*, 2005 and references therein).

Attempts to predict head blight have emphasised the importance of both inoculum and the environment for disease epidemics (*Parry et al.*, 1995). In order to predict disease incidence and to increase the ability of wheat producers to achieve good disease management, several FHB infection or mycotoxin risk assessment models have been developed (*De Wolf et al.*, 2003 and 2004; *Detrixhe et al.*, 2003; *Madden et al.*, 2004; *Schaaafsma et al.*, 2006).

Fusarium head blight (FHB) is well-suited for risk assessment modelling because of the severity of epidemics, compounded losses resulting from mycotoxin contamination, and related narrow time periods of pathogen sporulation, inoculum dispersal, and host infection (*De Wolf et al.*, 2003).

Computer models to predict the occurrence of FHB and deoxynivalenol (DON) contamination in wheat at harvest have been based on weather variables (temperature, rainfall and moisture) (*Moschini et al.*, 2001; *Hooker et al.*, 2002; *De Wolf et al.*, 2004; *Madden et al.*, 2004). In general, studies from outside the U.S. in spring and winter wheat regions (Europe, Canada, and Africa) indicated interactions between disease intensity and occurrence of DON comparable with or stronger than that found from U.S. winter wheat areas, and weaker than those found in studies of U.S. spring wheat areas (*Paul et al.*, 2005).

2.1 Argentina
Predictive models for FHB prevention

In Argentina, Moschini and Fortugno (1996) developed empirical equations to predict FHB incidence (Predictive Index: PI%) associating mean head blight incidence of many wheat cultivars with temperature and moisture variables. Two of these equations were validated subsequently by Moschini et al. (2001):

\[
\text{PI}\% = 20.37 + 8.63 \cdot \text{NP}_2 - 0.49 \cdot \text{DD}_{926} \quad (1)
\]

\[
\text{PI}\% = 18.34 + 4.12 \cdot \text{NP}_{12} - 0.45 \cdot \text{DD}_{1026} \quad (2)
\]

where NP\(_2\) is the number of 2 day periods with precipitation (≥0.2 mm) and relative humidity >81% on the first day and relative humidity ≥78% on the second day; NP\(_{12}\) is the total number of NP\(_2\) periods plus the total number of days with both precipitation ≥0.2 mm and average relative humidity > 83%. DD\(_{926}\) and DD\(_{1026}\) represent 926 or 1026 degree days accumulated and are calculated as:

\[
\text{DD}_{926} = \sum [(\text{MaxT}) - 26) + (9 - \text{MinT})] \quad (3)
\]

\[
\text{DD}_{1026} = \sum [(\text{MaxT}) - 26) + (10 - \text{MinT})] \quad (4)
\]

where MaxT is the maximum daily temperature >26°C, MinT is the minimum daily temperature <9°C or <10°C, and summation occurs over the days of the critical period length (CPL). CPL is the time period beginning 8 days before the heading date and ending when 530 degree days were accumulated (base temperature: 0°C).

This study showed that meteorological based empirical equations developed for Pergamino can be useful for predicting disease intensity at many northern locations in the Pampas region, making only a few changes in temperature thresholds. Fernandes et al. (2004) used a linked process-based model to assess the risk of FHB at three sites in South America, and stated that the highest risk index of FHB was probably due to the presence of more rainy days during the autumn in a specific climate scenario (Fernandes et al., 2004).
2.2 Belgium

In Belgium, in order to assess the risk of head blight infection in winter wheat, an agro-meteorological model has been developed on the basis of an interpolation of weather radar data (above all rainfall events) to simulate the leaf wetness duration on a grid size of 1 km x 1 km (Detrixhe et al., 2003). Leaf wetness duration has a strong relationship with the development and outbreak of plant diseases because many important pathogens require a layer of free water to move on the surface of plant organs and start their infective processes (Dalla Marta et al., 2005). This model is interesting for two reasons: the first is the interpolation of meteorological data on an area of interest and particularly the use of weather radar data to spatialise rainfall events in this area. The second is the use of the estimation of leaf wetness duration instead of relative humidity, in order to obtain a better characterization of risk of Fusarium head blight infection in winter wheat. Further calibration/validation tests are in progress to optimise the model developed (Detrixhe et al., 2003).

2.3 Canada

In Canada, Hooker et al. (2002) developed three equations to predict DON in mature grain at wheat heading, based on rainfall and temperature data, and their timing. They measured the concentration of DON in 399 farm fields in southern Ontario, Canada, from 1996 to 2000. Equation 5 predicts DON using weather information from 4 to 7 days before heading:

$$DON = \exp[-0.30 + 1.84 \text{RAIN}_A - 0.43 (\text{RAIN}_A)^2 - 0.56 \text{TMIN}] - 0.1 \quad (R^2 = 0.55) \quad (5)$$
where DON is the concentration of DON (µg g\(^{-1}\)), RAINA is the number of days of rain >5 mm day\(^{-1}\) in the period 4 to 7 days before heading, and TMIN is the number of days of temperature <10°C between 4 and 7 days before heading.

Equations 6 and 7 predicted DON using weather information from 7 days before heading to 10 days after heading:

when RAINB >0, then

\[
\text{DON} = \exp \left[-2.15 + 2.21 \text{RAINA} - 0.61 (\text{RAINA})^2 + 0.85 \text{RAINB} + 0.52 \text{RAINC} - 0.30 \text{TMIN} - 1.10 \text{TMAX} \right] - 0.1 \quad (R^2 = 0.79) \quad (6)
\]

and when RAINB = 0, then

\[
\text{DON} = \exp \left[-0.84 + 0.78 \text{RAINA} + 0.40 \text{RAINC} - 0.42 \text{TMIN} \right] - 0.1 \quad (R^2 = 0.56) \quad (7)
\]

where DON = concentration of DON (µg g\(^{-1}\)), RAINA is the number of days of rain >5 mm day\(^{-1}\) in the period 4 to 7 days before heading, RAINB is the number of days of rain >3 mm day\(^{-1}\) in the period 3 to 6 days after heading, RAINC is the number of days of rain >3 mm day\(^{-1}\) in the period 7 to 10 days after heading, TMIN is the number of days of temperature <10°C between 4 and 7 days before heading, and TMAX is the number of days with temperature >32°C between 4 and 7 days before heading.

DONcast, a robust site specific DON forecaster (Hooker and Schaafsma, 2003) was commercialised for wheat and has been used commercially for 5 years (Schaafsma and Hooker, 2006). For the first time, in 2004, a web-based interactive model, which allowed input of field-specific weather and agronomic variables, was developed for industry. The predictions have explained 76% of the variability in DON using a database from 1996 to 2003 (Hooker and Schaafsma, 2004).
2.4 Italy

In Italy, a predictive model regarding the risk of *Fusarium* head blight and mycotoxin contamination (DON and ZEA) in wheat was developed on the basis of meteorological data and information about wheat growth stages. *Rossi et al.* (2003a; 2003b) developed a dynamic simulation model for the risk of *Fusarium* head blight on wheat based on systems analysis. The model calculates a daily infection risk based on sporulation, spore dispersal and infection of the host tissue of the four main species causing the disease (*Gibberella zeae, Fusarium culmorum, Giberella avenacea, Monographella nivalis*).

The model was validated over 22 wheat-growing areas of northern Italy in 2002. In each area, a risk index (TOX-risk) was calculated daily for *F. graminearum* and *F. culmorum*, and accumulated over the growing season until harvest:

\[
\text{TOX-risk} = \text{SPO} \cdot \text{DIS} \cdot \text{INF} \cdot \text{GS} \cdot \text{INV} \quad (8)
\]

where SPO is the sporulation rate, DIS is the dispersal rate, INF is the infection rate, GS is the host growth stage, and INV is the invasion rate (*Rossi et al.*, 2003b). Rates are influenced by air temperature, relative humidity, rainfall, sequences of rainy days, wetness duration, and free water in the host tissue (a\text{w}); fungal species and the host growth stage are also considered.

Production of DON and ZEA in the kernels is then calculated by two regression equations, elaborated from artificial-inoculation experiments:

\[
\ln \text{DON} = 3.0894 \cdot \ln (\text{TOX-risk}) – 3.5231 \quad (9)
\]

\[
\ln \text{ZEA} = 0.2113 \cdot \exp (0.054 \cdot \text{TOX-risk}) \quad (10)
\]

The model produces two indices: one for the risk of FHB on wheat and one of mycotoxin content of kernels. Comparison between the actual content of both mycotoxins and the values estimated showed good concordance (*Rossi et al.*, 2003a).
2.5 The United States

A series of severe Fusarium head blight epidemics experienced in the United States of America led to a project to create a forecasting model. Using weather data, crop growth stage and disease observations from seven states, both spring and winter wheat production areas, prediction models for FHB of wheat were implemented (De Wolf et al., 2004; van Maanen and Xu, 2003). The final models used hourly temperature, humidity and rainfall to predict the risk of disease severity greater than 10%. The model deployed in 2004 also contained variables that allowed users to specify type of wheat (winter vs. spring) and whether winter wheat was planted into corn residue. Model accuracy was estimated to be near 80% based on data used to validate the model that was deployed for 23 states in 2004 as part of the National Fusarium Head Blight Prediction Center (www.wheatscab.psu.edu). Modelling of these field data showed that environmental conditions prior to flowering were more important than those during anthesis (Xu, 2003). The validation of the model and the development of an updated version for scab risk prediction are based on additional scab observations, weather data for different time windows, and the integration of empirical observations of epidemics with results from field and laboratory studies on scabs. The model was generally accurate in field testing, but improvements in accuracy are needed (Madden et al., 2004).

3. Limits of predictive models

Mycotoxins can be produced in field as well as during food storage and different meteorological, environmental and agronomic factors affect their production. For this reason, it is difficult to predict the occurrence of fungal diseases and toxin contamination in foodgrains.
Crop models have many current and potential uses for answering questions in research, crop management and policy. The descriptive models are easy to comprehend, often require fewer inputs, and often are easier to use and apply, but they have to be calibrated to each new site. On the other hand, the explanatory models are better able to model genotype X environment interaction, but their complexity makes them more difficult to understand and to use and apply, and they also require more input information. In many cases the outputs of the explanatory models may be less stable, particularly if the given information was incorrectly modelled. Cautions and limitations (table 1) in the model uses are suggested, because appropriate use for a particular purpose depends on whether the model has been correctly developed and validated in diverse environments (Boote et al., 1996):

- the level of complexity depends on the amount of information (data) and time available for model building and testing. Most computer models relate only meteorological variables and do not include field specific effects such as crop rotation, crop variety, tillage, etc;
- some simple, descriptive models have parameters that are site and year-specific, so that the model has little predictive ability for other locations;
- field and storage management and human behaviour (habits, customs, etc.) influence the mycotoxin problem; these factors are normally not included in model development, because they are difficult to quantify.

The application of predictive models, like many weather-driven prediction systems, will depend on the availability, resolution, and reliability of weather data. As suggested by De Wolf et al. (2003), a potential limitation of models A (temperature X humidity combination variable postanthesis) and B (model A X variables summarizing pre-anthesis weather interaction) was the dependence on weather information during anthesis. While it may be
possible to overcome this limitation by using forecasted weather, the uncertainty of predicted weather variables may reduce model prediction accuracy (De Wolf et al., 2003). Further, there is a tendency to extend the use of models that were developed for bacteria to moulds, but one important specificity of fungi should be taken in account: spore germination. Free water or near saturation moisture on the host surface is essential for germination and penetration of the host for many pathogens. Thus a single parameter indicating water availability is used in several forecasting systems; but, very few models aimed at assessing the influence of environmental factors on spore germination (Dantigny et al., 2005; van Maanen and Xu, 2003).

4. Conclusions

In order to predict the incidence of diseases and mycotoxin contamination and to increase the ability of producers to achieve good disease management, several epidemics or mycotoxins risk assessment models have been set up. The employment of models may be useful for decision-making purposes: to prevent/reduce yield losses and hazards for human and animal health based on the correct time for spraying chemicals; predict the final level of contamination and better organise post-harvest management.

Nevertheless, predictive models may present some limits of application and accuracy, and precise information on the approach to be taken for their development is needed before correct use can be guaranteed. As stated before, descriptive models are sufficiently reliable in the geographic area of development or in other very similar places. The amount of information requested is limited and they can be developed in a reasonably short time. Explanatory models are based on a considerable amount of information and it takes several
years to produce and process the necessary data, both for model development and validation. Then, they can be run in different areas, and can include different variables, such as meteorological, phenological and cropping system data and the output is precise and reliable. The accuracy of this kind of model largely depends on the accuracy of the weather forecast. In conclusion, modelling is a strategic tool for crop management aimed at preventing mycotoxin prevention contamination, but a lot of work is necessary to develop explanatory models with a good predictive capacity. More research is needed, taking into account other abiotic factors and fungal interactions to improve the microbiological safety and shelf-life of food products (Pardo et al., 2006). According to Paul et al. (2005) differences between models could be due to factors such as the genotypes planted, the weather conditions, the pathogen population, crop production, and disease management practices, as well as other unknown random effects; consideration of moderator variables attempts to explain some between-study variability (Paul et al., 2005). As demonstrated by Baranyi et al. (1996), the advice of McMeekin on parsimony is vital for predictive models, not only for simplicity but also to improve the accuracy of predictions (Baranyi et al., 1996 and reference therein).

Acknowledgement
This study was supported by the research project “Promoting Food Safety through a New Integrated Risk Analysis Approach for Foods (SAFE FOODS)” (Food-CT-2004-506446).

Reference
Predictive models for FHB prevention

Predictive models for FHB prevention

Predictive models for FHB prevention

TABLES

Table 1 - The predictive models

<table>
<thead>
<tr>
<th>PREDICTIVE MODELS</th>
<th>Disease/ mycotoxin</th>
<th>Crop</th>
<th>Limits</th>
<th>References</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>FHB</td>
<td>Wheat</td>
<td>Site- and year-specific</td>
<td>Moschini & Fortugno</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fernandes et al.</td>
<td>2004</td>
</tr>
<tr>
<td>Belgium</td>
<td>FHB</td>
<td>Winter wheat</td>
<td>Instrumental (radar) availability</td>
<td>Detrixhe et al.</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dalla Marta et al.</td>
<td>2005</td>
</tr>
<tr>
<td>Canada</td>
<td>DON</td>
<td>Cereal grain</td>
<td>Do not consider: crop rotation, crop variety, tillage, fertilization, etc.</td>
<td>Hooker et al.</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hooker & Schaafsma</td>
<td>2003 & 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Schaafsma & Hooker</td>
<td>2006</td>
</tr>
<tr>
<td>Italy</td>
<td>FHB, DON, ZEA</td>
<td>Wheat</td>
<td>Low accuracy for high TOX-risk</td>
<td>Rossi et al.</td>
<td>2003a & 2003b</td>
</tr>
<tr>
<td>The United States</td>
<td>FHB</td>
<td>Spring and winter wheat</td>
<td>Low accuracy</td>
<td>De Wolf et al.</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Van Maanen & Xu</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Xu</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Madden et al.</td>
<td>2004</td>
</tr>
<tr>
<td>Italy</td>
<td>F. verticillioides</td>
<td>Maize</td>
<td>Aspect of dynamic cycle of fungi are needed</td>
<td>Rossi et al.</td>
<td>2003a; 2003b & 2006</td>
</tr>
<tr>
<td>Europe</td>
<td>P. verrucosum</td>
<td>Cereal grain</td>
<td>Lack of field and storage management effects</td>
<td>Pardo et al.</td>
<td>2006</td>
</tr>
</tbody>
</table>